Metamath Proof Explorer


Theorem cdleme21b

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21a.l ˙=K
cdleme21a.j ˙=joinK
cdleme21a.a A=AtomsK
Assertion cdleme21b KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙z¬z˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme21a.l ˙=K
2 cdleme21a.j ˙=joinK
3 cdleme21a.a A=AtomsK
4 simp23 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙z¬S˙P˙Q
5 simp11 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zKHL
6 hlcvl KHLKCvLat
7 5 6 syl KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zKCvLat
8 simp3l KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zzA
9 simp13 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zQA
10 simp12 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zPA
11 simp21 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zSA
12 1 2 3 atnlej1 KHLSAPAQA¬S˙P˙QSP
13 12 necomd KHLSAPAQA¬S˙P˙QPS
14 5 11 10 9 4 13 syl131anc KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zPS
15 simp3r KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zP˙z=S˙z
16 3 2 cvlsupr5 KCvLatPASAzAPSP˙z=S˙zzP
17 7 10 11 8 14 15 16 syl132anc KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zzP
18 1 2 3 cvlatexch1 KCvLatzAQAPAzPz˙P˙QQ˙P˙z
19 7 8 9 10 17 18 syl131anc KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zz˙P˙QQ˙P˙z
20 3 2 cvlsupr8 KCvLatPASAzAPSP˙z=S˙zP˙S=P˙z
21 7 10 11 8 14 15 20 syl132anc KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zP˙S=P˙z
22 21 breq2d KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zQ˙P˙SQ˙P˙z
23 19 22 sylibrd KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zz˙P˙QQ˙P˙S
24 simp22 KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zPQ
25 24 necomd KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zQP
26 1 2 3 cvlatexch1 KCvLatQASAPAQPQ˙P˙SS˙P˙Q
27 7 9 11 10 25 26 syl131anc KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zQ˙P˙SS˙P˙Q
28 23 27 syld KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙zz˙P˙QS˙P˙Q
29 4 28 mtod KHLPAQASAPQ¬S˙P˙QzAP˙z=S˙z¬z˙P˙Q