Metamath Proof Explorer


Theorem cdleme25a

Description: Lemma for cdleme25b . (Contributed by NM, 1-Jan-2013)

Ref Expression
Hypotheses cdleme24.b B=BaseK
cdleme24.l ˙=K
cdleme24.j ˙=joinK
cdleme24.m ˙=meetK
cdleme24.a A=AtomsK
cdleme24.h H=LHypK
cdleme24.u U=P˙Q˙W
cdleme24.f F=s˙U˙Q˙P˙s˙W
cdleme24.n N=P˙Q˙F˙R˙s˙W
Assertion cdleme25a KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QNB

Proof

Step Hyp Ref Expression
1 cdleme24.b B=BaseK
2 cdleme24.l ˙=K
3 cdleme24.j ˙=joinK
4 cdleme24.m ˙=meetK
5 cdleme24.a A=AtomsK
6 cdleme24.h H=LHypK
7 cdleme24.u U=P˙Q˙W
8 cdleme24.f F=s˙U˙Q˙P˙s˙W
9 cdleme24.n N=P˙Q˙F˙R˙s˙W
10 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QKHL
11 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QWH
12 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPA¬P˙W
13 simp13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QQA¬Q˙W
14 simp3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPQ
15 2 3 5 6 cdlemb2 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙Q
16 10 11 12 13 14 15 syl221anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙Q
17 10 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAKHL
18 11 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAWH
19 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QPA
20 19 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAPA
21 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QQA
22 21 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAQA
23 simpl2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsARA
24 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsAsA
25 2 3 4 5 6 7 8 9 1 cdleme22gb KHLWHPAQARAsANB
26 17 18 20 22 23 24 25 syl222anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsANB
27 26 a1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QNB
28 27 ancld KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙Q¬s˙W¬s˙P˙QNB
29 28 reximdva KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QsA¬s˙W¬s˙P˙QNB
30 16 29 mpd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙P˙QsA¬s˙W¬s˙P˙QNB