Metamath Proof Explorer


Theorem cdleme31fv1

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme31.f F=xBifPQ¬x˙WOx
cdleme31.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
Assertion cdleme31fv1 XBPQ¬X˙WFX=C

Proof

Step Hyp Ref Expression
1 cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
2 cdleme31.f F=xBifPQ¬x˙WOx
3 cdleme31.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
4 1 2 3 cdleme31fv XBFX=ifPQ¬X˙WCX
5 iftrue PQ¬X˙WifPQ¬X˙WCX=C
6 4 5 sylan9eq XBPQ¬X˙WFX=C