Metamath Proof Explorer


Theorem cdleme31fv

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme31.f F=xBifPQ¬x˙WOx
cdleme31.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
Assertion cdleme31fv XBFX=ifPQ¬X˙WCX

Proof

Step Hyp Ref Expression
1 cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
2 cdleme31.f F=xBifPQ¬x˙WOx
3 cdleme31.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
4 riotaex ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙WV
5 3 4 eqeltri CV
6 ifexg CVXBifPQ¬X˙WCXV
7 5 6 mpan XBifPQ¬X˙WCXV
8 breq1 x=Xx˙WX˙W
9 8 notbid x=X¬x˙W¬X˙W
10 9 anbi2d x=XPQ¬x˙WPQ¬X˙W
11 oveq1 x=Xx˙W=X˙W
12 11 oveq2d x=Xs˙x˙W=s˙X˙W
13 id x=Xx=X
14 12 13 eqeq12d x=Xs˙x˙W=xs˙X˙W=X
15 14 anbi2d x=X¬s˙Ws˙x˙W=x¬s˙Ws˙X˙W=X
16 11 oveq2d x=XN˙x˙W=N˙X˙W
17 16 eqeq2d x=Xz=N˙x˙Wz=N˙X˙W
18 15 17 imbi12d x=X¬s˙Ws˙x˙W=xz=N˙x˙W¬s˙Ws˙X˙W=Xz=N˙X˙W
19 18 ralbidv x=XsA¬s˙Ws˙x˙W=xz=N˙x˙WsA¬s˙Ws˙X˙W=Xz=N˙X˙W
20 19 riotabidv x=XιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
21 20 1 3 3eqtr4g x=XO=C
22 10 21 13 ifbieq12d x=XifPQ¬x˙WOx=ifPQ¬X˙WCX
23 22 2 fvmptg XBifPQ¬X˙WCXVFX=ifPQ¬X˙WCX
24 7 23 mpdan XBFX=ifPQ¬X˙WCX