Metamath Proof Explorer


Theorem cdleme31fv1s

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Feb-2013)

Ref Expression
Hypotheses cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme31.f F=xBifPQ¬x˙WOx
Assertion cdleme31fv1s XBPQ¬X˙WFX=X/xO

Proof

Step Hyp Ref Expression
1 cdleme31.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
2 cdleme31.f F=xBifPQ¬x˙WOx
3 eqid ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
4 1 2 3 cdleme31fv1 XBPQ¬X˙WFX=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
5 1 3 cdleme31so XBX/xO=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
6 5 adantr XBPQ¬X˙WX/xO=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
7 4 6 eqtr4d XBPQ¬X˙WFX=X/xO