Metamath Proof Explorer


Theorem cdleme31so

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Feb-2013)

Ref Expression
Hypotheses cdleme31so.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme31so.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
Assertion cdleme31so XBX/xO=C

Proof

Step Hyp Ref Expression
1 cdleme31so.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
2 cdleme31so.c C=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
3 nfcvd XB_xιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
4 oveq1 x=Xx˙W=X˙W
5 4 oveq2d x=Xs˙x˙W=s˙X˙W
6 id x=Xx=X
7 5 6 eqeq12d x=Xs˙x˙W=xs˙X˙W=X
8 7 anbi2d x=X¬s˙Ws˙x˙W=x¬s˙Ws˙X˙W=X
9 4 oveq2d x=XN˙x˙W=N˙X˙W
10 9 eqeq2d x=Xz=N˙x˙Wz=N˙X˙W
11 8 10 imbi12d x=X¬s˙Ws˙x˙W=xz=N˙x˙W¬s˙Ws˙X˙W=Xz=N˙X˙W
12 11 ralbidv x=XsA¬s˙Ws˙x˙W=xz=N˙x˙WsA¬s˙Ws˙X˙W=Xz=N˙X˙W
13 12 riotabidv x=XιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
14 3 13 csbiegf XBX/xιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W=ιzB|sA¬s˙Ws˙X˙W=Xz=N˙X˙W
15 1 csbeq2i X/xO=X/xιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
16 14 15 2 3eqtr4g XBX/xO=C