Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31sn
Next ⟩
cdleme31sn1
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31sn
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 26-Feb-2013)
Ref
Expression
Hypotheses
cdleme31sn.n
⊢
N
=
if
s
≤
˙
P
∨
˙
Q
I
D
cdleme31sn.c
⊢
C
=
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
Assertion
cdleme31sn
⊢
R
∈
A
→
⦋
R
/
s
⦌
N
=
C
Proof
Step
Hyp
Ref
Expression
1
cdleme31sn.n
⊢
N
=
if
s
≤
˙
P
∨
˙
Q
I
D
2
cdleme31sn.c
⊢
C
=
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
3
nfv
⊢
Ⅎ
s
R
≤
˙
P
∨
˙
Q
4
nfcsb1v
⊢
Ⅎ
_
s
⦋
R
/
s
⦌
I
5
nfcsb1v
⊢
Ⅎ
_
s
⦋
R
/
s
⦌
D
6
3
4
5
nfif
⊢
Ⅎ
_
s
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
7
6
a1i
⊢
R
∈
A
→
Ⅎ
_
s
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
8
breq1
⊢
s
=
R
→
s
≤
˙
P
∨
˙
Q
↔
R
≤
˙
P
∨
˙
Q
9
csbeq1a
⊢
s
=
R
→
I
=
⦋
R
/
s
⦌
I
10
csbeq1a
⊢
s
=
R
→
D
=
⦋
R
/
s
⦌
D
11
8
9
10
ifbieq12d
⊢
s
=
R
→
if
s
≤
˙
P
∨
˙
Q
I
D
=
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
12
7
11
csbiegf
⊢
R
∈
A
→
⦋
R
/
s
⦌
if
s
≤
˙
P
∨
˙
Q
I
D
=
if
R
≤
˙
P
∨
˙
Q
⦋
R
/
s
⦌
I
⦋
R
/
s
⦌
D
13
1
csbeq2i
⊢
⦋
R
/
s
⦌
N
=
⦋
R
/
s
⦌
if
s
≤
˙
P
∨
˙
Q
I
D
14
12
13
2
3eqtr4g
⊢
R
∈
A
→
⦋
R
/
s
⦌
N
=
C