Metamath Proof Explorer


Theorem cdleme31sn

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme31sn.n N = if s ˙ P ˙ Q I D
cdleme31sn.c C = if R ˙ P ˙ Q R / s I R / s D
Assertion cdleme31sn R A R / s N = C

Proof

Step Hyp Ref Expression
1 cdleme31sn.n N = if s ˙ P ˙ Q I D
2 cdleme31sn.c C = if R ˙ P ˙ Q R / s I R / s D
3 nfv s R ˙ P ˙ Q
4 nfcsb1v _ s R / s I
5 nfcsb1v _ s R / s D
6 3 4 5 nfif _ s if R ˙ P ˙ Q R / s I R / s D
7 6 a1i R A _ s if R ˙ P ˙ Q R / s I R / s D
8 breq1 s = R s ˙ P ˙ Q R ˙ P ˙ Q
9 csbeq1a s = R I = R / s I
10 csbeq1a s = R D = R / s D
11 8 9 10 ifbieq12d s = R if s ˙ P ˙ Q I D = if R ˙ P ˙ Q R / s I R / s D
12 7 11 csbiegf R A R / s if s ˙ P ˙ Q I D = if R ˙ P ˙ Q R / s I R / s D
13 1 csbeq2i R / s N = R / s if s ˙ P ˙ Q I D
14 12 13 2 3eqtr4g R A R / s N = C