Metamath Proof Explorer


Theorem cdleme31sn

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme31sn.n N=ifs˙P˙QID
cdleme31sn.c C=ifR˙P˙QR/sIR/sD
Assertion cdleme31sn RAR/sN=C

Proof

Step Hyp Ref Expression
1 cdleme31sn.n N=ifs˙P˙QID
2 cdleme31sn.c C=ifR˙P˙QR/sIR/sD
3 nfv sR˙P˙Q
4 nfcsb1v _sR/sI
5 nfcsb1v _sR/sD
6 3 4 5 nfif _sifR˙P˙QR/sIR/sD
7 6 a1i RA_sifR˙P˙QR/sIR/sD
8 breq1 s=Rs˙P˙QR˙P˙Q
9 csbeq1a s=RI=R/sI
10 csbeq1a s=RD=R/sD
11 8 9 10 ifbieq12d s=Rifs˙P˙QID=ifR˙P˙QR/sIR/sD
12 7 11 csbiegf RAR/sifs˙P˙QID=ifR˙P˙QR/sIR/sD
13 1 csbeq2i R/sN=R/sifs˙P˙QID
14 12 13 2 3eqtr4g RAR/sN=C