| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme31so.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
| 2 |
|
cdleme31so.c |
⊢ 𝐶 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 3 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝐵 → Ⅎ 𝑥 ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ↔ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
| 8 |
7
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
| 9 |
4
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ↔ 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 13 |
12
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 14 |
3 13
|
csbiegf |
⊢ ( 𝑋 ∈ 𝐵 → ⦋ 𝑋 / 𝑥 ⦌ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
| 15 |
1
|
csbeq2i |
⊢ ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = ⦋ 𝑋 / 𝑥 ⦌ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
| 16 |
14 15 2
|
3eqtr4g |
⊢ ( 𝑋 ∈ 𝐵 → ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = 𝐶 ) |