Metamath Proof Explorer


Theorem cdleme31fv2

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 23-Feb-2013)

Ref Expression
Hypothesis cdleme31fv2.f F = x B if P Q ¬ x ˙ W O x
Assertion cdleme31fv2 X B ¬ P Q ¬ X ˙ W F X = X

Proof

Step Hyp Ref Expression
1 cdleme31fv2.f F = x B if P Q ¬ x ˙ W O x
2 breq1 x = X x ˙ W X ˙ W
3 2 notbid x = X ¬ x ˙ W ¬ X ˙ W
4 3 anbi2d x = X P Q ¬ x ˙ W P Q ¬ X ˙ W
5 4 notbid x = X ¬ P Q ¬ x ˙ W ¬ P Q ¬ X ˙ W
6 5 biimparc ¬ P Q ¬ X ˙ W x = X ¬ P Q ¬ x ˙ W
7 6 adantll X B ¬ P Q ¬ X ˙ W x = X ¬ P Q ¬ x ˙ W
8 7 iffalsed X B ¬ P Q ¬ X ˙ W x = X if P Q ¬ x ˙ W O x = x
9 simpr X B ¬ P Q ¬ X ˙ W x = X x = X
10 8 9 eqtrd X B ¬ P Q ¬ X ˙ W x = X if P Q ¬ x ˙ W O x = X
11 simpl X B ¬ P Q ¬ X ˙ W X B
12 1 10 11 11 fvmptd2 X B ¬ P Q ¬ X ˙ W F X = X