Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31fv2
Next ⟩
cdleme31id
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31fv2
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 23-Feb-2013)
Ref
Expression
Hypothesis
cdleme31fv2.f
⊢
F
=
x
∈
B
⟼
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
Assertion
cdleme31fv2
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
→
F
⁡
X
=
X
Proof
Step
Hyp
Ref
Expression
1
cdleme31fv2.f
⊢
F
=
x
∈
B
⟼
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
2
breq1
⊢
x
=
X
→
x
≤
˙
W
↔
X
≤
˙
W
3
2
notbid
⊢
x
=
X
→
¬
x
≤
˙
W
↔
¬
X
≤
˙
W
4
3
anbi2d
⊢
x
=
X
→
P
≠
Q
∧
¬
x
≤
˙
W
↔
P
≠
Q
∧
¬
X
≤
˙
W
5
4
notbid
⊢
x
=
X
→
¬
P
≠
Q
∧
¬
x
≤
˙
W
↔
¬
P
≠
Q
∧
¬
X
≤
˙
W
6
5
biimparc
⊢
¬
P
≠
Q
∧
¬
X
≤
˙
W
∧
x
=
X
→
¬
P
≠
Q
∧
¬
x
≤
˙
W
7
6
adantll
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
∧
x
=
X
→
¬
P
≠
Q
∧
¬
x
≤
˙
W
8
7
iffalsed
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
∧
x
=
X
→
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
=
x
9
simpr
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
∧
x
=
X
→
x
=
X
10
8
9
eqtrd
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
∧
x
=
X
→
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
=
X
11
simpl
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
→
X
∈
B
12
1
10
11
11
fvmptd2
⊢
X
∈
B
∧
¬
P
≠
Q
∧
¬
X
≤
˙
W
→
F
⁡
X
=
X