Metamath Proof Explorer


Theorem cdleme31id

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypothesis cdleme31fv2.f F = x B if P Q ¬ x ˙ W O x
Assertion cdleme31id X B P = Q F X = X

Proof

Step Hyp Ref Expression
1 cdleme31fv2.f F = x B if P Q ¬ x ˙ W O x
2 simpl P Q ¬ X ˙ W P Q
3 2 necon2bi P = Q ¬ P Q ¬ X ˙ W
4 1 cdleme31fv2 X B ¬ P Q ¬ X ˙ W F X = X
5 3 4 sylan2 X B P = Q F X = X