Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 18-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cdleme31fv2.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) | |
Assertion | cdleme31id | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑃 = 𝑄 ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31fv2.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) | |
2 | simpl | ⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) → 𝑃 ≠ 𝑄 ) | |
3 | 2 | necon2bi | ⊢ ( 𝑃 = 𝑄 → ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
4 | 1 | cdleme31fv2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |
5 | 3 4 | sylan2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑃 = 𝑄 ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |