Metamath Proof Explorer


Theorem cdleme31id

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypothesis cdleme31fv2.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme31id ( ( 𝑋𝐵𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 cdleme31fv2.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
2 simpl ( ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) → 𝑃𝑄 )
3 2 necon2bi ( 𝑃 = 𝑄 → ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) )
4 1 cdleme31fv2 ( ( 𝑋𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )
5 3 4 sylan2 ( ( 𝑋𝐵𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )