Metamath Proof Explorer


Theorem cdleme31id

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypothesis cdleme31fv2.f F=xBifPQ¬x˙WOx
Assertion cdleme31id XBP=QFX=X

Proof

Step Hyp Ref Expression
1 cdleme31fv2.f F=xBifPQ¬x˙WOx
2 simpl PQ¬X˙WPQ
3 2 necon2bi P=Q¬PQ¬X˙W
4 1 cdleme31fv2 XB¬PQ¬X˙WFX=X
5 3 4 sylan2 XBP=QFX=X