Metamath Proof Explorer


Theorem cdleme31sdnN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 31-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme31sdn.c C=s˙U˙Q˙P˙s˙W
cdleme31sdn.d D=t˙U˙Q˙P˙t˙W
cdleme31sdn.n N=ifs˙P˙QIC
Assertion cdleme31sdnN N=ifs˙P˙QIs/tD

Proof

Step Hyp Ref Expression
1 cdleme31sdn.c C=s˙U˙Q˙P˙s˙W
2 cdleme31sdn.d D=t˙U˙Q˙P˙t˙W
3 cdleme31sdn.n N=ifs˙P˙QIC
4 biid s˙P˙Qs˙P˙Q
5 2 1 cdleme31sc sVs/tD=C
6 5 elv s/tD=C
7 4 6 ifbieq2i ifs˙P˙QIs/tD=ifs˙P˙QIC
8 3 7 eqtr4i N=ifs˙P˙QIs/tD