Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to
cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
cdleme4.l |
|
|
|
cdleme4.j |
|
|
|
cdleme4.m |
|
|
|
cdleme4.a |
|
|
|
cdleme4.h |
|
|
|
cdleme4.u |
|
|
|
cdleme4.f |
|
|
|
cdleme4.g |
|
|
|
cdleme7.v |
|
|
Assertion |
cdleme7a |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
|
2 |
|
cdleme4.j |
|
3 |
|
cdleme4.m |
|
4 |
|
cdleme4.a |
|
5 |
|
cdleme4.h |
|
6 |
|
cdleme4.u |
|
7 |
|
cdleme4.f |
|
8 |
|
cdleme4.g |
|
9 |
|
cdleme7.v |
|
10 |
9
|
oveq2i |
|
11 |
10
|
oveq2i |
|
12 |
8 11
|
eqtr4i |
|