| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme4.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
cdleme4.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 8 |
|
cdleme4.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 9 |
|
cdleme7.v |
⊢ 𝑉 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
| 10 |
9
|
oveq2i |
⊢ ( 𝐹 ∨ 𝑉 ) = ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
| 11 |
10
|
oveq2i |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝑉 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 12 |
8 11
|
eqtr4i |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝑉 ) ) |