Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme4.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme4.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme4.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme7.v |
⊢ 𝑉 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
12 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
13 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
14 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
15 |
|
nbrne2 |
⊢ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ≠ 𝑆 ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≠ 𝑆 ) |
17 |
1 2 3 4 5
|
lhpat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑅 ≠ 𝑆 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐴 ) |
18 |
10 11 12 16 17
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐴 ) |
19 |
9 18
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ 𝐴 ) |