| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme4.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme4.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme4.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme4.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme4.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme4.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme4.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
| 9 |
|
cdleme7.v |
|- V = ( ( R .\/ S ) ./\ W ) |
| 10 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 12 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
| 13 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
| 14 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 15 |
|
nbrne2 |
|- ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R =/= S ) |
| 17 |
1 2 3 4 5
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ R =/= S ) ) -> ( ( R .\/ S ) ./\ W ) e. A ) |
| 18 |
10 11 12 16 17
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. A ) |
| 19 |
9 18
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> V e. A ) |