Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme4.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme4.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme4.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme4.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme4.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme4.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme4.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
9 |
|
cdleme7.v |
|- V = ( ( R .\/ S ) ./\ W ) |
10 |
6 9
|
oveq12i |
|- ( U ./\ V ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( R .\/ S ) ./\ W ) ) |
11 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A ) |
13 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
14 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
15 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
16 |
1 2 3 4 5 6
|
cdleme4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) ) |
17 |
11 12 13 14 15 16
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( R .\/ U ) ) |
18 |
17
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = ( ( R .\/ U ) ./\ ( R .\/ S ) ) ) |
19 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
20 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
21 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
22 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
23 |
11 20 13 21 22
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> U e. A ) |
24 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A ) |
25 |
|
simp2ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A ) |
26 |
19
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
27 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
28 |
27 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
29 |
19 12 13 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
30 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. H ) |
31 |
27 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
32 |
30 31
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
33 |
27 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
34 |
26 29 32 33
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
35 |
6 34
|
eqbrtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> U .<_ W ) |
36 |
|
simp2rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ W ) |
37 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. S .<_ W ) -> U =/= S ) |
38 |
35 36 37
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> U =/= S ) |
39 |
1 2 3 4 5 6 7 8
|
cdleme7aa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( U .\/ S ) ) |
40 |
1 2 3 4
|
2llnma2 |
|- ( ( K e. HL /\ ( U e. A /\ S e. A /\ R e. A ) /\ ( U =/= S /\ -. R .<_ ( U .\/ S ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ S ) ) = R ) |
41 |
19 23 24 25 38 39 40
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ S ) ) = R ) |
42 |
18 41
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ S ) ) = R ) |
43 |
42
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) ./\ W ) = ( R ./\ W ) ) |
44 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
45 |
19 44
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. OL ) |
46 |
27 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
47 |
19 25 24 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
48 |
27 3
|
latmmdir |
|- ( ( K e. OL /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) ./\ W ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( R .\/ S ) ./\ W ) ) ) |
49 |
45 29 47 32 48
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ ( R .\/ S ) ) ./\ W ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( R .\/ S ) ./\ W ) ) ) |
50 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
51 |
1 3 50 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
52 |
11 14 51
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
53 |
43 49 52
|
3eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( R .\/ S ) ./\ W ) ) = ( 0. ` K ) ) |
54 |
10 53
|
eqtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( U ./\ V ) = ( 0. ` K ) ) |
55 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
56 |
19 55
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. AtLat ) |
57 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
58 |
1 2 3 4 5 6 7 8 9
|
cdleme7b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> V e. A ) |
59 |
11 14 24 57 15 58
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> V e. A ) |
60 |
3 50 4
|
atnem0 |
|- ( ( K e. AtLat /\ U e. A /\ V e. A ) -> ( U =/= V <-> ( U ./\ V ) = ( 0. ` K ) ) ) |
61 |
56 23 59 60
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( U =/= V <-> ( U ./\ V ) = ( 0. ` K ) ) ) |
62 |
54 61
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> U =/= V ) |