Metamath Proof Explorer


Theorem cdlemefr32fvaN

Description: Part of proof of Lemma E in Crawley p. 113. Value of F at an atom not under W . TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefr27.b B=BaseK
cdlemefr27.l ˙=K
cdlemefr27.j ˙=joinK
cdlemefr27.m ˙=meetK
cdlemefr27.a A=AtomsK
cdlemefr27.h H=LHypK
cdlemefr27.u U=P˙Q˙W
cdlemefr27.c C=s˙U˙Q˙P˙s˙W
cdlemefr27.n N=ifs˙P˙QIC
cdleme29fr.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
Assertion cdlemefr32fvaN KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/xO=R/sN

Proof

Step Hyp Ref Expression
1 cdlemefr27.b B=BaseK
2 cdlemefr27.l ˙=K
3 cdlemefr27.j ˙=joinK
4 cdlemefr27.m ˙=meetK
5 cdlemefr27.a A=AtomsK
6 cdlemefr27.h H=LHypK
7 cdlemefr27.u U=P˙Q˙W
8 cdlemefr27.c C=s˙U˙Q˙P˙s˙W
9 cdlemefr27.n N=ifs˙P˙QIC
10 cdleme29fr.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
11 breq1 s=Rs˙P˙QR˙P˙Q
12 11 notbid s=R¬s˙P˙Q¬R˙P˙Q
13 simp11 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QKHLWH
14 simp12l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QPA
15 simp13l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QQA
16 simp3l KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QsA
17 simp3rr KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙Q¬s˙P˙Q
18 simp2 KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QPQ
19 1 2 3 4 5 6 7 8 9 cdlemefr27cl KHLWHPAQAsA¬s˙P˙QPQNB
20 13 14 15 16 17 18 19 syl33anc KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙W¬s˙P˙QNB
21 1 2 3 4 5 6 7 8 9 cdlemefr32snb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNB
22 1 2 3 4 5 6 12 20 21 10 cdlemefrs32fva KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/xO=R/sN