Metamath Proof Explorer
Description: Show closure of [_ R / s ]_ N . (Contributed by NM, 28-Mar-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cdlemefr27.b |
|
|
|
cdlemefr27.l |
|
|
|
cdlemefr27.j |
|
|
|
cdlemefr27.m |
|
|
|
cdlemefr27.a |
|
|
|
cdlemefr27.h |
|
|
|
cdlemefr27.u |
|
|
|
cdlemefr27.c |
|
|
|
cdlemefr27.n |
|
|
Assertion |
cdlemefr32snb |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefr27.b |
|
2 |
|
cdlemefr27.l |
|
3 |
|
cdlemefr27.j |
|
4 |
|
cdlemefr27.m |
|
5 |
|
cdlemefr27.a |
|
6 |
|
cdlemefr27.h |
|
7 |
|
cdlemefr27.u |
|
8 |
|
cdlemefr27.c |
|
9 |
|
cdlemefr27.n |
|
10 |
1 2 3 4 5 6 7 8 9
|
cdlemefr32sn2aw |
|
11 |
10
|
simpld |
|
12 |
1 5
|
atbase |
|
13 |
11 12
|
syl |
|