Metamath Proof Explorer


Theorem cdlemefr32snb

Description: Show closure of [_ R / s ]_ N . (Contributed by NM, 28-Mar-2013)

Ref Expression
Hypotheses cdlemefr27.b B=BaseK
cdlemefr27.l ˙=K
cdlemefr27.j ˙=joinK
cdlemefr27.m ˙=meetK
cdlemefr27.a A=AtomsK
cdlemefr27.h H=LHypK
cdlemefr27.u U=P˙Q˙W
cdlemefr27.c C=s˙U˙Q˙P˙s˙W
cdlemefr27.n N=ifs˙P˙QIC
Assertion cdlemefr32snb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNB

Proof

Step Hyp Ref Expression
1 cdlemefr27.b B=BaseK
2 cdlemefr27.l ˙=K
3 cdlemefr27.j ˙=joinK
4 cdlemefr27.m ˙=meetK
5 cdlemefr27.a A=AtomsK
6 cdlemefr27.h H=LHypK
7 cdlemefr27.u U=P˙Q˙W
8 cdlemefr27.c C=s˙U˙Q˙P˙s˙W
9 cdlemefr27.n N=ifs˙P˙QIC
10 1 2 3 4 5 6 7 8 9 cdlemefr32sn2aw KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNA¬R/sN˙W
11 10 simpld KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNA
12 1 5 atbase R/sNAR/sNB
13 11 12 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNB