Metamath Proof Explorer


Theorem cdlemefs45ee

Description: Explicit expansion of cdlemefs45 . TODO: use to shorten cdlemefs45 uses? Should ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) be assigned to a hypothesis letter? TODO: FIX COMMENT. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef45.b B=BaseK
cdlemef45.l ˙=K
cdlemef45.j ˙=joinK
cdlemef45.m ˙=meetK
cdlemef45.a A=AtomsK
cdlemef45.h H=LHypK
cdlemef45.u U=P˙Q˙W
cdlemef45.d D=t˙U˙Q˙P˙t˙W
cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemefs45.e E=P˙Q˙D˙s˙t˙W
Assertion cdlemefs45ee KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W

Proof

Step Hyp Ref Expression
1 cdlemef45.b B=BaseK
2 cdlemef45.l ˙=K
3 cdlemef45.j ˙=joinK
4 cdlemef45.m ˙=meetK
5 cdlemef45.a A=AtomsK
6 cdlemef45.h H=LHypK
7 cdlemef45.u U=P˙Q˙W
8 cdlemef45.d D=t˙U˙Q˙P˙t˙W
9 cdlemef45.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
10 cdlemefs45.e E=P˙Q˙D˙s˙t˙W
11 1 2 3 4 5 6 7 8 9 10 cdlemefs45 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=R/sS/tE
12 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
13 simp23l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA
14 eqid S˙U˙Q˙P˙S˙W=S˙U˙Q˙P˙S˙W
15 eqid P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
16 8 10 14 15 cdleme31sde RASAR/sS/tE=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
17 12 13 16 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR/sS/tE=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
18 11 17 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W