Metamath Proof Explorer


Theorem cdlemg11a

Description: TODO: FIX COMMENT. (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg11a KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPP

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP˙FGQP˙Q
8 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PFGP=P
9 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PKHLWH
10 simpl2 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PPA¬P˙WQA¬Q˙W
11 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PFT
12 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PGT
13 1 4 5 6 cdlemg6 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PFGQ=Q
14 9 10 11 12 8 13 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PFGQ=Q
15 8 14 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PFGP˙FGQ=P˙Q
16 15 ex KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP=PFGP˙FGQ=P˙Q
17 16 necon3d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP˙FGQP˙QFGPP
18 7 17 mpd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPP