Metamath Proof Explorer


Theorem cdlemg6

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg6.l ˙=K
cdlemg6.a A=AtomsK
cdlemg6.h H=LHypK
cdlemg6.t T=LTrnKW
Assertion cdlemg6 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PFGQ=Q

Proof

Step Hyp Ref Expression
1 cdlemg6.l ˙=K
2 cdlemg6.a A=AtomsK
3 cdlemg6.h H=LHypK
4 cdlemg6.t T=LTrnKW
5 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGKHLWH
6 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGPA¬P˙W
7 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGQA¬Q˙W
8 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGFT
9 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGGT
10 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGQ˙PjoinKtrLKWG
11 simpl33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGFGP=P
12 eqid trLKW=trLKW
13 eqid joinK=joinK
14 eqid trLKWG=trLKWG
15 1 2 3 4 12 13 14 cdlemg6e KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙PjoinKtrLKWGFGP=PFGQ=Q
16 5 6 7 8 9 10 11 15 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PQ˙PjoinKtrLKWGFGQ=Q
17 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGKHLWH
18 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGPA¬P˙W
19 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGQA¬Q˙W
20 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGFT
21 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGGT
22 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWG¬Q˙PjoinKtrLKWG
23 simpl33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGFGP=P
24 1 2 3 4 12 13 14 cdlemg4 KHLWHPA¬P˙WQA¬Q˙WFTGT¬Q˙PjoinKtrLKWGFGP=PFGQ=Q
25 17 18 19 20 21 22 23 24 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=P¬Q˙PjoinKtrLKWGFGQ=Q
26 16 25 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WFTGTFGP=PFGQ=Q