Metamath Proof Explorer


Theorem cdlemg6

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg6.l = ( le ‘ 𝐾 )
cdlemg6.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg6.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 cdlemg6.l = ( le ‘ 𝐾 )
2 cdlemg6.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg6.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg6.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
7 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
8 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → 𝐹𝑇 )
9 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → 𝐺𝑇 )
10 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) )
11 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
12 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
14 eqid ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 )
15 1 2 3 4 12 13 14 cdlemg6e ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
16 5 6 7 8 9 10 11 15 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
17 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
18 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
19 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
20 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → 𝐹𝑇 )
21 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → 𝐺𝑇 )
22 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) )
23 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
24 1 2 3 4 12 13 14 cdlemg4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇 ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
25 17 18 19 20 21 22 23 24 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑄 ( 𝑃 ( join ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )
26 16 25 pm2.61dan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) = 𝑄 )