| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg4.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg4.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | cdlemg4.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | cdlemg4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 7 |  | cdlemg4b.v | ⊢ 𝑉  =  ( 𝑅 ‘ 𝐺 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simp21 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 10 |  | simp31 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 11 | 1 2 3 4 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 12 | 8 10 9 11 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 13 | 1 6 2 3 | cdlemb3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 14 | 8 9 12 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 | cdlemg6d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ( ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 )  ∧  ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  𝑄 ) ) | 
						
							| 16 | 15 | exp4c | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑟  ∈  𝐴  →  ( ¬  𝑟  ≤  𝑊  →  ( ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  𝑄 ) ) ) ) | 
						
							| 17 | 16 | imp4a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑟  ∈  𝐴  →  ( ( ¬  𝑟  ≤  𝑊  ∧  ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  𝑄 ) ) ) | 
						
							| 18 | 17 | rexlimdv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ¬  𝑟  ≤  ( 𝑃  ∨  ( 𝐺 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  𝑄 ) ) | 
						
							| 19 | 14 18 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝐺  ∈  𝑇  ∧  𝑄  ≤  ( 𝑃  ∨  𝑉 )  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  =  𝑄 ) |