Metamath Proof Explorer


Theorem cdlemb3

Description: Given two atoms not under the fiducial co-atom W , there is a third. Lemma B in Crawley p. 112. TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle ? Then replace cdlemb2 with it. This is a more general version of cdlemb2 without P =/= Q condition. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg5.l = ( le ‘ 𝐾 )
cdlemg5.j = ( join ‘ 𝐾 )
cdlemg5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg5.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion cdlemb3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg5.l = ( le ‘ 𝐾 )
2 cdlemg5.j = ( join ‘ 𝐾 )
3 cdlemg5.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemg5.h 𝐻 = ( LHyp ‘ 𝐾 )
5 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
7 1 2 3 4 cdlemg5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ∃ 𝑟𝐴 ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) )
8 5 6 7 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟𝐴 ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) )
9 ancom ( ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) ↔ ( ¬ 𝑟 𝑊𝑃𝑟 ) )
10 eqcom ( 𝑃 = 𝑟𝑟 = 𝑃 )
11 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → 𝑃 = 𝑄 )
12 11 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑃 𝑃 ) = ( 𝑃 𝑄 ) )
13 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → 𝐾 ∈ HL )
14 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → 𝑃𝐴 )
15 2 3 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑃 𝑃 ) = 𝑃 )
16 13 14 15 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑃 𝑃 ) = 𝑃 )
17 12 16 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑃 𝑄 ) = 𝑃 )
18 17 breq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑟 ( 𝑃 𝑄 ) ↔ 𝑟 𝑃 ) )
19 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
20 13 19 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → 𝐾 ∈ AtLat )
21 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → 𝑟𝐴 )
22 1 3 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴 ) → ( 𝑟 𝑃𝑟 = 𝑃 ) )
23 20 21 14 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑟 𝑃𝑟 = 𝑃 ) )
24 18 23 bitr2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑟 = 𝑃𝑟 ( 𝑃 𝑄 ) ) )
25 10 24 syl5bb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑃 = 𝑟𝑟 ( 𝑃 𝑄 ) ) )
26 25 necon3abid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( 𝑃𝑟 ↔ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
27 26 anbi2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( ( ¬ 𝑟 𝑊𝑃𝑟 ) ↔ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) )
28 9 27 syl5bb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄𝑟𝐴 ) → ( ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) ↔ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) )
29 28 3expa ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) ∧ 𝑟𝐴 ) → ( ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) ↔ ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) )
30 29 rexbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( ∃ 𝑟𝐴 ( 𝑃𝑟 ∧ ¬ 𝑟 𝑊 ) ↔ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) )
31 8 30 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
32 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
34 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
35 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
36 1 2 3 4 cdlemb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
37 32 33 34 35 36 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
38 31 37 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )