| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg4.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg4.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | cdlemg4.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 6 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 7 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 8 | 5 1 6 7 2 3 | lhpmcvr2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) ) | 
						
							| 10 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝑟  ∈  𝐴 ) | 
						
							| 12 |  | simp3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ¬  𝑟  ≤  𝑊 ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) ) | 
						
							| 14 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) | 
						
							| 15 |  | simp13 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 16 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) | 
						
							| 17 | 3 4 1 6 2 7 5 | cdlemg2fv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 18 | 10 13 14 15 16 17 | syl122anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑋 )  =  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 19 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝐾  ∈  HL ) | 
						
							| 20 | 19 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝐾  ∈  Lat ) | 
						
							| 21 | 1 2 3 4 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑟 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) )  →  ( 𝐹 ‘ 𝑟 )  ∈  𝐴 ) | 
						
							| 23 | 10 15 13 22 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑟 )  ∈  𝐴 ) | 
						
							| 24 | 5 2 | atbase | ⊢ ( ( 𝐹 ‘ 𝑟 )  ∈  𝐴  →  ( 𝐹 ‘ 𝑟 )  ∈  𝐵 ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑟 )  ∈  𝐵 ) | 
						
							| 26 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 27 |  | simp11r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 28 | 5 3 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝑊  ∈  𝐵 ) | 
						
							| 30 | 5 7 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  𝐵 ) | 
						
							| 31 | 20 26 29 30 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  𝐵 ) | 
						
							| 32 | 5 6 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹 ‘ 𝑟 )  ∈  𝐵  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  𝐵 ) | 
						
							| 33 | 20 25 31 32 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  𝐵 ) | 
						
							| 34 | 18 33 | eqeltrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 35 | 21 | simprd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) )  →  ¬  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) | 
						
							| 36 | 10 15 13 35 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ¬  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) | 
						
							| 37 | 5 1 6 | latlej1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹 ‘ 𝑟 )  ∈  𝐵  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑟 )  ≤  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 38 | 20 25 31 37 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ 𝑟 )  ≤  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 39 | 5 1 | lattr | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝐹 ‘ 𝑟 )  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝑟 )  ≤  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ≤  𝑊 )  →  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) ) | 
						
							| 40 | 20 25 33 29 39 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑟 )  ≤  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ≤  𝑊 )  →  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) ) | 
						
							| 41 | 38 40 | mpand | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ≤  𝑊  →  ( 𝐹 ‘ 𝑟 )  ≤  𝑊 ) ) | 
						
							| 42 | 36 41 | mtod | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ¬  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ≤  𝑊 ) | 
						
							| 43 | 18 | breq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑋 )  ≤  𝑊  ↔  ( ( 𝐹 ‘ 𝑟 ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  ≤  𝑊 ) ) | 
						
							| 44 | 42 43 | mtbird | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ¬  ( 𝐹 ‘ 𝑋 )  ≤  𝑊 ) | 
						
							| 45 | 34 44 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐹 ‘ 𝑋 )  ≤  𝑊 ) ) | 
						
							| 46 | 45 | rexlimdv3a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  →  ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐹 ‘ 𝑋 )  ≤  𝑊 ) ) ) | 
						
							| 47 | 9 46 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐹 ‘ 𝑋 )  ≤  𝑊 ) ) |