| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg4.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg4.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | cdlemg4.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | cdlemg4.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 5 |  | cdlemg4.b |  |-  B = ( Base ` K ) | 
						
							| 6 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 7 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 8 | 5 1 6 7 2 3 | lhpmcvr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) | 
						
							| 10 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | simp2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> r e. A ) | 
						
							| 12 |  | simp3l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. r .<_ W ) | 
						
							| 13 | 11 12 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r e. A /\ -. r .<_ W ) ) | 
						
							| 14 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) | 
						
							| 15 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> F e. T ) | 
						
							| 16 |  | simp3r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) | 
						
							| 17 | 3 4 1 6 2 7 5 | cdlemg2fv |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( r e. A /\ -. r .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) = ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 18 | 10 13 14 15 16 17 | syl122anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) = ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 19 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. HL ) | 
						
							| 20 | 19 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> K e. Lat ) | 
						
							| 21 | 1 2 3 4 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> ( ( F ` r ) e. A /\ -. ( F ` r ) .<_ W ) ) | 
						
							| 22 | 21 | simpld |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> ( F ` r ) e. A ) | 
						
							| 23 | 10 15 13 22 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) e. A ) | 
						
							| 24 | 5 2 | atbase |  |-  ( ( F ` r ) e. A -> ( F ` r ) e. B ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) e. B ) | 
						
							| 26 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> X e. B ) | 
						
							| 27 |  | simp11r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. H ) | 
						
							| 28 | 5 3 | lhpbase |  |-  ( W e. H -> W e. B ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> W e. B ) | 
						
							| 30 | 5 7 | latmcl |  |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( meet ` K ) W ) e. B ) | 
						
							| 31 | 20 26 29 30 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X ( meet ` K ) W ) e. B ) | 
						
							| 32 | 5 6 | latjcl |  |-  ( ( K e. Lat /\ ( F ` r ) e. B /\ ( X ( meet ` K ) W ) e. B ) -> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B ) | 
						
							| 33 | 20 25 31 32 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B ) | 
						
							| 34 | 18 33 | eqeltrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` X ) e. B ) | 
						
							| 35 | 21 | simprd |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( r e. A /\ -. r .<_ W ) ) -> -. ( F ` r ) .<_ W ) | 
						
							| 36 | 10 15 13 35 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( F ` r ) .<_ W ) | 
						
							| 37 | 5 1 6 | latlej1 |  |-  ( ( K e. Lat /\ ( F ` r ) e. B /\ ( X ( meet ` K ) W ) e. B ) -> ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 38 | 20 25 31 37 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 39 | 5 1 | lattr |  |-  ( ( K e. Lat /\ ( ( F ` r ) e. B /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) e. B /\ W e. B ) ) -> ( ( ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) -> ( F ` r ) .<_ W ) ) | 
						
							| 40 | 20 25 33 29 39 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( F ` r ) .<_ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) /\ ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) -> ( F ` r ) .<_ W ) ) | 
						
							| 41 | 38 40 | mpand |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W -> ( F ` r ) .<_ W ) ) | 
						
							| 42 | 36 41 | mtod |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) | 
						
							| 43 | 18 | breq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` X ) .<_ W <-> ( ( F ` r ) ( join ` K ) ( X ( meet ` K ) W ) ) .<_ W ) ) | 
						
							| 44 | 42 43 | mtbird |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. ( F ` X ) .<_ W ) | 
						
							| 45 | 34 44 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) | 
						
							| 46 | 45 | rexlimdv3a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> ( E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) ) | 
						
							| 47 | 9 46 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ F e. T ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) |