Metamath Proof Explorer


Theorem cdlemg7fvbwN

Description: Properties of a translation of an element not under W . TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw ? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg4.l ˙ = K
cdlemg4.a A = Atoms K
cdlemg4.h H = LHyp K
cdlemg4.t T = LTrn K W
cdlemg4.b B = Base K
Assertion cdlemg7fvbwN K HL W H X B ¬ X ˙ W F T F X B ¬ F X ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙ = K
2 cdlemg4.a A = Atoms K
3 cdlemg4.h H = LHyp K
4 cdlemg4.t T = LTrn K W
5 cdlemg4.b B = Base K
6 eqid join K = join K
7 eqid meet K = meet K
8 5 1 6 7 2 3 lhpmcvr2 K HL W H X B ¬ X ˙ W r A ¬ r ˙ W r join K X meet K W = X
9 8 3adant3 K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X
10 simp11 K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X K HL W H
11 simp2 K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X r A
12 simp3l K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X ¬ r ˙ W
13 11 12 jca K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X r A ¬ r ˙ W
14 simp12 K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X X B ¬ X ˙ W
15 simp13 K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F T
16 simp3r K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X r join K X meet K W = X
17 3 4 1 6 2 7 5 cdlemg2fv K HL W H r A ¬ r ˙ W X B ¬ X ˙ W F T r join K X meet K W = X F X = F r join K X meet K W
18 10 13 14 15 16 17 syl122anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F X = F r join K X meet K W
19 simp11l K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X K HL
20 19 hllatd K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X K Lat
21 1 2 3 4 ltrnel K HL W H F T r A ¬ r ˙ W F r A ¬ F r ˙ W
22 21 simpld K HL W H F T r A ¬ r ˙ W F r A
23 10 15 13 22 syl3anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r A
24 5 2 atbase F r A F r B
25 23 24 syl K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r B
26 simp12l K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X X B
27 simp11r K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X W H
28 5 3 lhpbase W H W B
29 27 28 syl K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X W B
30 5 7 latmcl K Lat X B W B X meet K W B
31 20 26 29 30 syl3anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X X meet K W B
32 5 6 latjcl K Lat F r B X meet K W B F r join K X meet K W B
33 20 25 31 32 syl3anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r join K X meet K W B
34 18 33 eqeltrd K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F X B
35 21 simprd K HL W H F T r A ¬ r ˙ W ¬ F r ˙ W
36 10 15 13 35 syl3anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X ¬ F r ˙ W
37 5 1 6 latlej1 K Lat F r B X meet K W B F r ˙ F r join K X meet K W
38 20 25 31 37 syl3anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r ˙ F r join K X meet K W
39 5 1 lattr K Lat F r B F r join K X meet K W B W B F r ˙ F r join K X meet K W F r join K X meet K W ˙ W F r ˙ W
40 20 25 33 29 39 syl13anc K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r ˙ F r join K X meet K W F r join K X meet K W ˙ W F r ˙ W
41 38 40 mpand K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F r join K X meet K W ˙ W F r ˙ W
42 36 41 mtod K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X ¬ F r join K X meet K W ˙ W
43 18 breq1d K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F X ˙ W F r join K X meet K W ˙ W
44 42 43 mtbird K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X ¬ F X ˙ W
45 34 44 jca K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F X B ¬ F X ˙ W
46 45 rexlimdv3a K HL W H X B ¬ X ˙ W F T r A ¬ r ˙ W r join K X meet K W = X F X B ¬ F X ˙ W
47 9 46 mpd K HL W H X B ¬ X ˙ W F T F X B ¬ F X ˙ W