| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdlemg5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdlemg5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
cdlemg5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
1 3 4
|
lhpexle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑊 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑊 ) |
| 7 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) → ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) |
| 9 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 10 |
1 2 3 4
|
cdlemf1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑞 ) ) ) |
| 11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑞 ) ) ) |
| 12 |
|
3simpa |
⊢ ( ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑞 ) ) → ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
| 13 |
12
|
reximi |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑞 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
| 15 |
6 14
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |