| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhp2a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lhp2a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
lhp2a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ HL ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
5 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 8 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 9 |
8 3
|
lhpn0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ≠ ( 0. ‘ 𝐾 ) ) |
| 10 |
5 1 8 2
|
atle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 ≤ 𝑊 ) |
| 11 |
4 7 9 10
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ≤ 𝑊 ) |