| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg7fv.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg7fv.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg7fv.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg7fv.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg7fv.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg7fv.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 7 |  | cdlemg7fv.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simp32 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 10 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 11 | 2 5 6 7 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 13 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) | 
						
							| 14 | 2 5 6 7 1 | cdlemg7fvbwN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝐺  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑋 )  ≤  𝑊 ) ) | 
						
							| 15 | 8 13 9 14 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑋 )  ≤  𝑊 ) ) | 
						
							| 16 |  | simp31 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 17 |  | simp33 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) | 
						
							| 18 | 6 7 2 3 5 4 1 | cdlemg2fv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐺 ‘ 𝑋 )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 19 | 8 10 13 9 17 18 | syl122anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐺 ‘ 𝑋 )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 )  =  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) )  ∧  𝑊 ) ) | 
						
							| 21 |  | simp2rl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 1 2 3 4 5 6 | lhpelim | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) )  ∧  𝑊 )  =  ( 𝑋  ∧  𝑊 ) ) | 
						
							| 23 | 8 12 21 22 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) )  ∧  𝑊 )  =  ( 𝑋  ∧  𝑊 ) ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 )  =  ( 𝑋  ∧  𝑊 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) )  =  ( ( 𝐺 ‘ 𝑃 )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 26 | 25 19 | eqtr4d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 27 | 6 7 2 3 5 4 1 | cdlemg2fv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( 𝐺 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑃 )  ≤  𝑊 )  ∧  ( ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ¬  ( 𝐺 ‘ 𝑋 )  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑃 )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) )  =  ( 𝐺 ‘ 𝑋 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) ) ) | 
						
							| 28 | 8 12 15 16 26 27 | syl122anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) ) ) | 
						
							| 29 | 24 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( ( 𝐺 ‘ 𝑋 )  ∧  𝑊 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 30 | 28 29 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑃  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝑋  ∧  𝑊 ) ) ) |