Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg7.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg7.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemg7.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemg7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemg7.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝐾 ∈ HL ) |
7 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → 𝑊 ∈ 𝐻 ) |
8 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
11 |
1 2 9 10 3 4
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) |
12 |
6 7 8 11
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) |
13 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝑟 ∈ 𝐴 ) |
15 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑟 ≤ 𝑊 ) |
16 |
14 15
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
17 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
18 |
|
simp131 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐹 ∈ 𝑇 ) |
19 |
|
simp132 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → 𝐺 ∈ 𝑇 ) |
20 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) |
21 |
1 2 9 10 3 4 5
|
cdlemg7fvN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
22 |
13 16 17 18 19 20 21
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
23 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
24 |
|
simp133 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) |
25 |
2 3 4 5
|
cdlemg6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) = 𝑟 ) |
26 |
13 23 16 18 19 24 25
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) = 𝑟 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
28 |
22 27 20
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |
29 |
28
|
rexlimdv3a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) ) |
30 |
12 29
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |