| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg7.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg7.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg7.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg7.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | simp1l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝐾  ∈  HL ) | 
						
							| 7 |  | simp1r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 8 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) | 
						
							| 9 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 10 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 11 | 1 2 9 10 3 4 | lhpmcvr2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) ) | 
						
							| 12 | 6 7 8 11 | syl21anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) ) | 
						
							| 13 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 14 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝑟  ∈  𝐴 ) | 
						
							| 15 |  | simp3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ¬  𝑟  ≤  𝑊 ) | 
						
							| 16 | 14 15 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) ) | 
						
							| 17 |  | simp12r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) | 
						
							| 18 |  | simp131 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 19 |  | simp132 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 20 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) | 
						
							| 21 | 1 2 9 10 3 4 5 | cdlemg7fvN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 22 | 13 16 17 18 19 20 21 | syl123anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 23 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 24 |  | simp133 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) | 
						
							| 25 | 2 3 4 5 | cdlemg6 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑟  ∈  𝐴  ∧  ¬  𝑟  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) )  =  𝑟 ) | 
						
							| 26 | 13 23 16 18 19 24 25 | syl123anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) )  =  𝑟 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑟 ) ) ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 28 | 22 27 20 | 3eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑟  ∈  𝐴  ∧  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 29 | 28 | rexlimdv3a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑟 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  𝑋 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 30 | 12 29 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) |