| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg7.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg7.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg7.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg7.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | simpl1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | simpl31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  𝐹  ∈  𝑇 ) | 
						
							| 8 |  | simpl32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  𝐺  ∈  𝑇 ) | 
						
							| 9 |  | simpl2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 1 4 5 | ltrncl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  𝑋  ≤  𝑊 ) | 
						
							| 13 | 1 2 4 5 | ltrnval1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≤  𝑊 ) )  →  ( 𝐺 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 14 | 6 8 9 12 13 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐺 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 15 | 14 12 | eqbrtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐺 ‘ 𝑋 )  ≤  𝑊 ) | 
						
							| 16 | 1 2 4 5 | ltrnval1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≤  𝑊 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 17 | 6 7 11 15 16 | syl112anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 18 | 17 14 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  𝑋  ≤  𝑊 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 19 |  | simpl1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 20 |  | simpl2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 21 |  | simpl2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ¬  𝑋  ≤  𝑊 ) | 
						
							| 23 | 21 22 | jca | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) | 
						
							| 24 |  | simpl31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  𝐹  ∈  𝑇 ) | 
						
							| 25 |  | simpl32 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  𝐺  ∈  𝑇 ) | 
						
							| 26 |  | simpl33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) | 
						
							| 27 | 1 2 3 4 5 | cdlemg7aN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 28 | 19 20 23 24 25 26 27 | syl123anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  ∧  ¬  𝑋  ≤  𝑊 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 29 | 18 28 | pm2.61dan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  =  𝑃 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) |