Metamath Proof Explorer


Theorem cdlemg7N

Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg7.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg7.l = ( le ‘ 𝐾 )
cdlemg7.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg7.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg7.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg7N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 cdlemg7.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg7.l = ( le ‘ 𝐾 )
3 cdlemg7.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemg7.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdlemg7.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → 𝐹𝑇 )
8 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → 𝐺𝑇 )
9 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → 𝑋𝐵 )
10 1 4 5 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑋𝐵 ) → ( 𝐺𝑋 ) ∈ 𝐵 )
11 6 8 9 10 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐺𝑋 ) ∈ 𝐵 )
12 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → 𝑋 𝑊 )
13 1 2 4 5 ltrnval1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐺𝑋 ) = 𝑋 )
14 6 8 9 12 13 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐺𝑋 ) = 𝑋 )
15 14 12 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐺𝑋 ) 𝑊 )
16 1 2 4 5 ltrnval1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑋 ) ∈ 𝐵 ∧ ( 𝐺𝑋 ) 𝑊 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐺𝑋 ) )
17 6 7 11 15 16 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = ( 𝐺𝑋 ) )
18 17 14 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ 𝑋 𝑊 ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
19 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → 𝑋𝐵 )
22 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ¬ 𝑋 𝑊 )
23 21 22 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
24 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → 𝐹𝑇 )
25 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → 𝐺𝑇 )
26 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 )
27 1 2 3 4 5 cdlemg7aN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
28 19 20 23 24 25 26 27 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) ∧ ¬ 𝑋 𝑊 ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
29 18 28 pm2.61dan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝐺𝑋 ) ) = 𝑋 )