| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg7.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemg7.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemg7.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | cdlemg7.h |  |-  H = ( LHyp ` K ) | 
						
							| 5 |  | cdlemg7.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 6 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> K e. HL ) | 
						
							| 7 |  | simp1r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> W e. H ) | 
						
							| 8 |  | simp2r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( X e. B /\ -. X .<_ W ) ) | 
						
							| 9 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 10 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 11 | 1 2 9 10 3 4 | lhpmcvr2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) | 
						
							| 12 | 6 7 8 11 | syl21anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) | 
						
							| 13 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 14 |  | simp2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> r e. A ) | 
						
							| 15 |  | simp3l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> -. r .<_ W ) | 
						
							| 16 | 14 15 | jca |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r e. A /\ -. r .<_ W ) ) | 
						
							| 17 |  | simp12r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) | 
						
							| 18 |  | simp131 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> F e. T ) | 
						
							| 19 |  | simp132 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> G e. T ) | 
						
							| 20 |  | simp3r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) | 
						
							| 21 | 1 2 9 10 3 4 5 | cdlemg7fvN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( r e. A /\ -. r .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 22 | 13 16 17 18 19 20 21 | syl123anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 23 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 24 |  | simp133 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` P ) ) = P ) | 
						
							| 25 | 2 3 4 5 | cdlemg6 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( r e. A /\ -. r .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` r ) ) = r ) | 
						
							| 26 | 13 23 16 18 19 24 25 | syl123anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` r ) ) = r ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( ( F ` ( G ` r ) ) ( join ` K ) ( X ( meet ` K ) W ) ) = ( r ( join ` K ) ( X ( meet ` K ) W ) ) ) | 
						
							| 28 | 22 27 20 | 3eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) /\ r e. A /\ ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) ) -> ( F ` ( G ` X ) ) = X ) | 
						
							| 29 | 28 | rexlimdv3a |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( E. r e. A ( -. r .<_ W /\ ( r ( join ` K ) ( X ( meet ` K ) W ) ) = X ) -> ( F ` ( G ` X ) ) = X ) ) | 
						
							| 30 | 12 29 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( F ` ( G ` P ) ) = P ) ) -> ( F ` ( G ` X ) ) = X ) |