| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg7fv.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemg7fv.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemg7fv.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemg7fv.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | cdlemg7fv.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | cdlemg7fv.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | cdlemg7fv.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 8 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> G e. T ) | 
						
							| 10 |  | simp2l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 11 | 2 5 6 7 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 12 | 8 9 10 11 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 13 |  | simp2r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( X e. B /\ -. X .<_ W ) ) | 
						
							| 14 | 2 5 6 7 1 | cdlemg7fvbwN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ G e. T ) -> ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) | 
						
							| 15 | 8 13 9 14 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) | 
						
							| 16 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> F e. T ) | 
						
							| 17 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( P .\/ ( X ./\ W ) ) = X ) | 
						
							| 18 | 6 7 2 3 5 4 1 | cdlemg2fv |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( G ` X ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) | 
						
							| 19 | 8 10 13 9 17 18 | syl122anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( G ` X ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) ./\ W ) = ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) ) | 
						
							| 21 |  | simp2rl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> X e. B ) | 
						
							| 22 | 1 2 3 4 5 6 | lhpelim |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ X e. B ) -> ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) ) | 
						
							| 23 | 8 12 21 22 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( G ` P ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) ) | 
						
							| 24 | 20 23 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` X ) ./\ W ) = ( X ./\ W ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( ( G ` P ) .\/ ( X ./\ W ) ) ) | 
						
							| 26 | 25 19 | eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( G ` X ) ) | 
						
							| 27 | 6 7 2 3 5 4 1 | cdlemg2fv |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( ( G ` X ) e. B /\ -. ( G ` X ) .<_ W ) ) /\ ( F e. T /\ ( ( G ` P ) .\/ ( ( G ` X ) ./\ W ) ) = ( G ` X ) ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) ) | 
						
							| 28 | 8 12 15 16 26 27 | syl122anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) ) | 
						
							| 29 | 24 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` ( G ` P ) ) .\/ ( ( G ` X ) ./\ W ) ) = ( ( F ` ( G ` P ) ) .\/ ( X ./\ W ) ) ) | 
						
							| 30 | 28 29 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ G e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` ( G ` X ) ) = ( ( F ` ( G ` P ) ) .\/ ( X ./\ W ) ) ) |