Metamath Proof Explorer


Theorem cdlemg11aq

Description: TODO: FIX COMMENT. TODO: can proof using this be restructured to use cdlemg11a ? (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg11aq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G Q Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q K HL W H
8 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q Q A ¬ Q ˙ W
9 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q P A ¬ P ˙ W
10 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F T
11 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q G T
12 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q
13 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q K HL
14 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q P A
15 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
16 7 10 11 14 15 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P A
17 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q Q A
18 1 4 5 6 ltrncoat K HL W H F T G T Q A F G Q A
19 7 10 11 17 18 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G Q A
20 2 4 hlatjcom K HL F G P A F G Q A F G P ˙ F G Q = F G Q ˙ F G P
21 13 16 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P ˙ F G Q = F G Q ˙ F G P
22 2 4 hlatjcom K HL P A Q A P ˙ Q = Q ˙ P
23 13 14 17 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q P ˙ Q = Q ˙ P
24 12 21 23 3netr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G Q ˙ F G P Q ˙ P
25 1 2 3 4 5 6 cdlemg11a K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T F G Q ˙ F G P Q ˙ P F G Q Q
26 7 8 9 10 11 24 25 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G Q Q