Metamath Proof Explorer


Theorem cdlemg11aq

Description: TODO: FIX COMMENT. TODO: can proof using this be restructured to use cdlemg11a ? (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg11aq KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGQQ

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QKHLWH
8 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QQA¬Q˙W
9 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QPA¬P˙W
10 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFT
11 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QGT
12 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP˙FGQP˙Q
13 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QKHL
14 simp2ll KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QPA
15 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
16 7 10 11 14 15 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGPA
17 simp2rl KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QQA
18 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
19 7 10 11 17 18 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGQA
20 2 4 hlatjcom KHLFGPAFGQAFGP˙FGQ=FGQ˙FGP
21 13 16 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGP˙FGQ=FGQ˙FGP
22 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
23 13 14 17 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QP˙Q=Q˙P
24 12 21 23 3netr3d KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGQ˙FGPQ˙P
25 1 2 3 4 5 6 cdlemg11a KHLWHQA¬Q˙WPA¬P˙WFTGTFGQ˙FGPQ˙PFGQQ
26 7 8 9 10 11 24 25 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQP˙QFGQQ