Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|
2 |
|
cdlemg8.j |
|
3 |
|
cdlemg8.m |
|
4 |
|
cdlemg8.a |
|
5 |
|
cdlemg8.h |
|
6 |
|
cdlemg8.t |
|
7 |
|
cdlemg10.r |
|
8 |
|
simp1 |
|
9 |
|
simp3l |
|
10 |
1 5 6 7
|
trlle |
|
11 |
8 9 10
|
syl2anc |
|
12 |
11
|
biantrud |
|
13 |
|
simp1l |
|
14 |
13
|
hllatd |
|
15 |
|
eqid |
|
16 |
15 5 6 7
|
trlcl |
|
17 |
8 9 16
|
syl2anc |
|
18 |
|
simp3r |
|
19 |
|
simp2ll |
|
20 |
1 4 5 6
|
ltrnat |
|
21 |
8 18 19 20
|
syl3anc |
|
22 |
|
simp2rl |
|
23 |
1 4 5 6
|
ltrnat |
|
24 |
8 18 22 23
|
syl3anc |
|
25 |
15 2 4
|
hlatjcl |
|
26 |
13 21 24 25
|
syl3anc |
|
27 |
|
simp1r |
|
28 |
15 5
|
lhpbase |
|
29 |
27 28
|
syl |
|
30 |
15 1 3
|
latlem12 |
|
31 |
14 17 26 29 30
|
syl13anc |
|
32 |
15 2 4
|
hlatjcl |
|
33 |
13 19 22 32
|
syl3anc |
|
34 |
15 1 3
|
latlem12 |
|
35 |
14 17 33 29 34
|
syl13anc |
|
36 |
11
|
biantrud |
|
37 |
1 2 3 4 5 6
|
cdlemg10b |
|
38 |
37
|
3adant3l |
|
39 |
38
|
breq2d |
|
40 |
35 36 39
|
3bitr4rd |
|
41 |
12 31 40
|
3bitrd |
|