Metamath Proof Explorer


Theorem cdlemg10c

Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in trl* area? (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
cdlemg10.r R = trL K W
Assertion cdlemg10c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q R F ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 cdlemg10.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T K HL W H
9 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F T
10 1 5 6 7 trlle K HL W H F T R F ˙ W
11 8 9 10 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ W
12 11 biantrud K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q R F ˙ G P ˙ G Q R F ˙ W
13 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T K HL
14 13 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T K Lat
15 eqid Base K = Base K
16 15 5 6 7 trlcl K HL W H F T R F Base K
17 8 9 16 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F Base K
18 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G T
19 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P A
20 1 4 5 6 ltrnat K HL W H G T P A G P A
21 8 18 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P A
22 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T Q A
23 1 4 5 6 ltrnat K HL W H G T Q A G Q A
24 8 18 22 23 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G Q A
25 15 2 4 hlatjcl K HL G P A G Q A G P ˙ G Q Base K
26 13 21 24 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P ˙ G Q Base K
27 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T W H
28 15 5 lhpbase W H W Base K
29 27 28 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T W Base K
30 15 1 3 latlem12 K Lat R F Base K G P ˙ G Q Base K W Base K R F ˙ G P ˙ G Q R F ˙ W R F ˙ G P ˙ G Q ˙ W
31 14 17 26 29 30 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q R F ˙ W R F ˙ G P ˙ G Q ˙ W
32 15 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
33 13 19 22 32 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P ˙ Q Base K
34 15 1 3 latlem12 K Lat R F Base K P ˙ Q Base K W Base K R F ˙ P ˙ Q R F ˙ W R F ˙ P ˙ Q ˙ W
35 14 17 33 29 34 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ P ˙ Q R F ˙ W R F ˙ P ˙ Q ˙ W
36 11 biantrud K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ P ˙ Q R F ˙ P ˙ Q R F ˙ W
37 1 2 3 4 5 6 cdlemg10b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T G P ˙ G Q ˙ W = P ˙ Q ˙ W
38 37 3adant3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P ˙ G Q ˙ W = P ˙ Q ˙ W
39 38 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q ˙ W R F ˙ P ˙ Q ˙ W
40 35 36 39 3bitr4rd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q ˙ W R F ˙ P ˙ Q
41 12 31 40 3bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T R F ˙ G P ˙ G Q R F ˙ P ˙ Q