Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|
2 |
|
cdlemg8.j |
|
3 |
|
cdlemg8.m |
|
4 |
|
cdlemg8.a |
|
5 |
|
cdlemg8.h |
|
6 |
|
cdlemg8.t |
|
7 |
|
cdlemg10.r |
|
8 |
|
simp11 |
|
9 |
|
simp12 |
|
10 |
|
simp13 |
|
11 |
|
simp21 |
|
12 |
|
simp22 |
|
13 |
|
simp23 |
|
14 |
|
simp31 |
|
15 |
1 2 3 4 5 6
|
cdlemg9 |
|
16 |
8 9 10 11 12 13 14 15
|
syl133anc |
|
17 |
1 4 5 6
|
ltrnel |
|
18 |
8 12 9 17
|
syl3anc |
|
19 |
1 4 5 6
|
ltrnel |
|
20 |
8 12 10 19
|
syl3anc |
|
21 |
|
simp12l |
|
22 |
|
simp13l |
|
23 |
4 5 6
|
ltrn11at |
|
24 |
8 12 21 22 13 23
|
syl113anc |
|
25 |
|
simp32 |
|
26 |
1 2 3 4 5 6 7
|
cdlemg10c |
|
27 |
8 9 10 11 12 26
|
syl122anc |
|
28 |
25 27
|
mtbird |
|
29 |
1 2 3 4 5 6 7
|
trlval4 |
|
30 |
8 11 18 20 24 28 29
|
syl132anc |
|
31 |
|
simp11l |
|
32 |
1 4 5 6
|
ltrnat |
|
33 |
8 12 21 32
|
syl3anc |
|
34 |
1 4 5 6
|
ltrnat |
|
35 |
8 11 33 34
|
syl3anc |
|
36 |
2 4
|
hlatjcom |
|
37 |
31 33 35 36
|
syl3anc |
|
38 |
1 4 5 6
|
ltrnat |
|
39 |
8 12 22 38
|
syl3anc |
|
40 |
1 4 5 6
|
ltrnat |
|
41 |
8 11 39 40
|
syl3anc |
|
42 |
2 4
|
hlatjcom |
|
43 |
31 39 41 42
|
syl3anc |
|
44 |
37 43
|
oveq12d |
|
45 |
30 44
|
eqtrd |
|
46 |
|
simp33 |
|
47 |
1 2 3 4 5 6 7
|
trlval4 |
|
48 |
8 12 9 10 13 46 47
|
syl132anc |
|
49 |
2 4
|
hlatjcom |
|
50 |
31 21 33 49
|
syl3anc |
|
51 |
2 4
|
hlatjcom |
|
52 |
31 22 39 51
|
syl3anc |
|
53 |
50 52
|
oveq12d |
|
54 |
48 53
|
eqtrd |
|
55 |
45 54
|
oveq12d |
|
56 |
16 55
|
breqtrrd |
|