Metamath Proof Explorer


Theorem cdlemg10a

Description: TODO: FIX COMMENT. (Contributed by NM, 3-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
cdlemg10.r R=trLKW
Assertion cdlemg10a KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙RF˙RG

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 cdlemg10.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QKHLWH
9 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QPA¬P˙W
10 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QQA¬Q˙W
11 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFT
12 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGT
13 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QPQ
14 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFGP˙FGQP˙Q
15 1 2 3 4 5 6 cdlemg9 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙FGP˙GP˙FGQ˙GQ˙GP˙P˙GQ˙Q
16 8 9 10 11 12 13 14 15 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙FGP˙GP˙FGQ˙GQ˙GP˙P˙GQ˙Q
17 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
18 8 12 9 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGPA¬GP˙W
19 1 4 5 6 ltrnel KHLWHGTQA¬Q˙WGQA¬GQ˙W
20 8 12 10 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGQA¬GQ˙W
21 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QPA
22 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QQA
23 4 5 6 ltrn11at KHLWHGTPAQAPQGPGQ
24 8 12 21 22 13 23 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGPGQ
25 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙Q¬RF˙P˙Q
26 1 2 3 4 5 6 7 cdlemg10c KHLWHPA¬P˙WQA¬Q˙WFTGTRF˙GP˙GQRF˙P˙Q
27 8 9 10 11 12 26 syl122anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙GP˙GQRF˙P˙Q
28 25 27 mtbird KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙Q¬RF˙GP˙GQ
29 1 2 3 4 5 6 7 trlval4 KHLWHFTGPA¬GP˙WGQA¬GQ˙WGPGQ¬RF˙GP˙GQRF=GP˙FGP˙GQ˙FGQ
30 8 11 18 20 24 28 29 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF=GP˙FGP˙GQ˙FGQ
31 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QKHL
32 1 4 5 6 ltrnat KHLWHGTPAGPA
33 8 12 21 32 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGPA
34 1 4 5 6 ltrnat KHLWHFTGPAFGPA
35 8 11 33 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFGPA
36 2 4 hlatjcom KHLGPAFGPAGP˙FGP=FGP˙GP
37 31 33 35 36 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGP˙FGP=FGP˙GP
38 1 4 5 6 ltrnat KHLWHGTQAGQA
39 8 12 22 38 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGQA
40 1 4 5 6 ltrnat KHLWHFTGQAFGQA
41 8 11 39 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFGQA
42 2 4 hlatjcom KHLGQAFGQAGQ˙FGQ=FGQ˙GQ
43 31 39 41 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGQ˙FGQ=FGQ˙GQ
44 37 43 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGP˙FGP˙GQ˙FGQ=FGP˙GP˙FGQ˙GQ
45 30 44 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF=FGP˙GP˙FGQ˙GQ
46 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙Q¬RG˙P˙Q
47 1 2 3 4 5 6 7 trlval4 KHLWHGTPA¬P˙WQA¬Q˙WPQ¬RG˙P˙QRG=P˙GP˙Q˙GQ
48 8 12 9 10 13 46 47 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRG=P˙GP˙Q˙GQ
49 2 4 hlatjcom KHLPAGPAP˙GP=GP˙P
50 31 21 33 49 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙GP=GP˙P
51 2 4 hlatjcom KHLQAGQAQ˙GQ=GQ˙Q
52 31 22 39 51 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QQ˙GQ=GQ˙Q
53 50 52 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙GP˙Q˙GQ=GP˙P˙GQ˙Q
54 48 53 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRG=GP˙P˙GQ˙Q
55 45 54 oveq12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙RG=FGP˙GP˙FGQ˙GQ˙GP˙P˙GQ˙Q
56 16 55 breqtrrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙RF˙RG