Metamath Proof Explorer


Theorem cdlemg10a

Description: TODO: FIX COMMENT. (Contributed by NM, 3-May-2013)

Ref Expression
Hypotheses cdlemg8.l = ( le ‘ 𝐾 )
cdlemg8.j = ( join ‘ 𝐾 )
cdlemg8.m = ( meet ‘ 𝐾 )
cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg10.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg10a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l = ( le ‘ 𝐾 )
2 cdlemg8.j = ( join ‘ 𝐾 )
3 cdlemg8.m = ( meet ‘ 𝐾 )
4 cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg10.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
11 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝐹𝑇 )
12 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝐺𝑇 )
13 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
14 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
15 1 2 3 4 5 6 cdlemg9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) )
16 8 9 10 11 12 13 14 15 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) )
17 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
18 8 12 9 17 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
19 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
20 8 12 10 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) )
21 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
22 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
23 4 5 6 ltrn11at ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( 𝐺𝑃 ) ≠ ( 𝐺𝑄 ) )
24 8 12 21 22 13 23 syl113anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑃 ) ≠ ( 𝐺𝑄 ) )
25 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) )
26 1 2 3 4 5 6 7 cdlemg10c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑅𝐹 ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ↔ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ) )
27 8 9 10 11 12 26 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑅𝐹 ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ↔ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ) )
28 25 27 mtbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ¬ ( 𝑅𝐹 ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) )
29 1 2 3 4 5 6 7 trlval4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ∧ ( ( 𝐺𝑄 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑄 ) 𝑊 ) ) ∧ ( ( 𝐺𝑃 ) ≠ ( 𝐺𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) )
30 8 11 18 20 24 28 29 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) )
31 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
32 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
33 8 12 21 32 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
34 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
35 8 11 33 34 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
36 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐺𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) → ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) )
37 31 33 35 36 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) )
38 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑄𝐴 ) → ( 𝐺𝑄 ) ∈ 𝐴 )
39 8 12 22 38 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑄 ) ∈ 𝐴 )
40 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝐺𝑄 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
41 8 11 39 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
42 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ ( 𝐺𝑄 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ) → ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) )
43 31 39 41 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) = ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) )
44 37 43 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( ( 𝐺𝑃 ) ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( ( 𝐺𝑄 ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) )
45 30 44 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐹 ) = ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) )
46 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) )
47 1 2 3 4 5 6 7 trlval4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) ( 𝑄 ( 𝐺𝑄 ) ) ) )
48 8 12 9 10 13 46 47 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐺 ) = ( ( 𝑃 ( 𝐺𝑃 ) ) ( 𝑄 ( 𝐺𝑄 ) ) ) )
49 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) → ( 𝑃 ( 𝐺𝑃 ) ) = ( ( 𝐺𝑃 ) 𝑃 ) )
50 31 21 33 49 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐺𝑃 ) ) = ( ( 𝐺𝑃 ) 𝑃 ) )
51 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ∧ ( 𝐺𝑄 ) ∈ 𝐴 ) → ( 𝑄 ( 𝐺𝑄 ) ) = ( ( 𝐺𝑄 ) 𝑄 ) )
52 31 22 39 51 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑄 ( 𝐺𝑄 ) ) = ( ( 𝐺𝑄 ) 𝑄 ) )
53 50 52 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐺𝑃 ) ) ( 𝑄 ( 𝐺𝑄 ) ) ) = ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) )
54 48 53 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐺 ) = ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) )
55 45 54 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) = ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) )
56 16 55 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐹 ) ( 𝑃 𝑄 ) ∧ ¬ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑅𝐹 ) ( 𝑅𝐺 ) ) )