Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg8.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg8.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg10.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
12 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
14 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐺 ∈ 𝑇 ) |
15 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
16 |
12 14 11 15
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) |
17 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
18 |
12 13 16 17
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) |
19 |
8 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
9 11 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
22 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑄 ) ∈ 𝐴 ) |
23 |
12 14 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑄 ) ∈ 𝐴 ) |
24 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑄 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ∈ 𝐴 ) |
25 |
12 13 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ∈ 𝐴 ) |
26 |
8 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ∈ 𝐴 ) → ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
9 21 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
8 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
10 20 27 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
8 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
12 13 30
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
8 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
12 14 32
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
8 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
10 31 33 34
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
37 |
8 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
39 |
1 2 3 4 5 6 7
|
cdlemg10a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ≤ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
40 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
41 |
12 13 40
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ) |
42 |
1 5 6 7
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) |
43 |
12 14 42
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) |
44 |
8 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ‘ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ≤ 𝑊 ) ) |
45 |
10 31 33 38 44
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( ( 𝑅 ‘ 𝐹 ) ≤ 𝑊 ∧ ( 𝑅 ‘ 𝐺 ) ≤ 𝑊 ) ↔ ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ≤ 𝑊 ) ) |
46 |
41 43 45
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ‘ 𝐹 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ≤ 𝑊 ) |
47 |
8 1 10 29 35 38 39 46
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ≤ 𝑊 ) |