| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg8.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg8.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg8.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg8.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg8.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg8.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg10.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 10 | 9 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 11 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 12 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 14 |  | simp22 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐺  ∈  𝑇 ) | 
						
							| 15 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 16 | 12 14 11 15 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 17 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝐺 ‘ 𝑃 )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 18 | 12 13 16 17 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 ) | 
						
							| 19 | 8 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∈  𝐴 )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 20 | 9 11 18 19 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 22 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇  ∧  𝑄  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 23 | 12 14 21 22 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑄 )  ∈  𝐴 ) | 
						
							| 24 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝐺 ‘ 𝑄 )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 25 | 12 13 23 24 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 ) | 
						
							| 26 | 8 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∈  𝐴 )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 27 | 9 21 25 26 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 28 | 8 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 29 | 10 20 27 28 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 8 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 12 13 30 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 | 8 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 12 14 32 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 34 | 8 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 35 | 10 31 33 34 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 36 |  | simp11r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 37 | 8 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 39 | 1 2 3 4 5 6 7 | cdlemg10a | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  ≤  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) ) ) | 
						
							| 40 | 1 5 6 7 | trlle | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 41 | 12 13 40 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 ) | 
						
							| 42 | 1 5 6 7 | trlle | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 ) | 
						
							| 43 | 12 14 42 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 ) | 
						
							| 44 | 8 1 2 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑅 ‘ 𝐹 )  ≤  𝑊  ∧  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 )  ↔  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) )  ≤  𝑊 ) ) | 
						
							| 45 | 10 31 33 38 44 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝑅 ‘ 𝐹 )  ≤  𝑊  ∧  ( 𝑅 ‘ 𝐺 )  ≤  𝑊 )  ↔  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) )  ≤  𝑊 ) ) | 
						
							| 46 | 41 43 45 | mpbi2and | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅 ‘ 𝐹 )  ∨  ( 𝑅 ‘ 𝐺 ) )  ≤  𝑊 ) | 
						
							| 47 | 8 1 10 29 35 38 39 46 | lattrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) )  ≠  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) )  ∧  ( 𝑄  ∨  ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) )  ≤  𝑊 ) |