Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|
2 |
|
cdlemg8.j |
|
3 |
|
cdlemg8.m |
|
4 |
|
cdlemg8.a |
|
5 |
|
cdlemg8.h |
|
6 |
|
cdlemg8.t |
|
7 |
|
cdlemg10.r |
|
8 |
|
eqid |
|
9 |
|
simp11l |
|
10 |
9
|
hllatd |
|
11 |
|
simp12l |
|
12 |
|
simp11 |
|
13 |
|
simp21 |
|
14 |
|
simp22 |
|
15 |
1 4 5 6
|
ltrnat |
|
16 |
12 14 11 15
|
syl3anc |
|
17 |
1 4 5 6
|
ltrnat |
|
18 |
12 13 16 17
|
syl3anc |
|
19 |
8 2 4
|
hlatjcl |
|
20 |
9 11 18 19
|
syl3anc |
|
21 |
|
simp13l |
|
22 |
1 4 5 6
|
ltrnat |
|
23 |
12 14 21 22
|
syl3anc |
|
24 |
1 4 5 6
|
ltrnat |
|
25 |
12 13 23 24
|
syl3anc |
|
26 |
8 2 4
|
hlatjcl |
|
27 |
9 21 25 26
|
syl3anc |
|
28 |
8 3
|
latmcl |
|
29 |
10 20 27 28
|
syl3anc |
|
30 |
8 5 6 7
|
trlcl |
|
31 |
12 13 30
|
syl2anc |
|
32 |
8 5 6 7
|
trlcl |
|
33 |
12 14 32
|
syl2anc |
|
34 |
8 2
|
latjcl |
|
35 |
10 31 33 34
|
syl3anc |
|
36 |
|
simp11r |
|
37 |
8 5
|
lhpbase |
|
38 |
36 37
|
syl |
|
39 |
1 2 3 4 5 6 7
|
cdlemg10a |
|
40 |
1 5 6 7
|
trlle |
|
41 |
12 13 40
|
syl2anc |
|
42 |
1 5 6 7
|
trlle |
|
43 |
12 14 42
|
syl2anc |
|
44 |
8 1 2
|
latjle12 |
|
45 |
10 31 33 38 44
|
syl13anc |
|
46 |
41 43 45
|
mpbi2and |
|
47 |
8 1 10 29 35 38 39 46
|
lattrd |
|