Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|
2 |
|
cdlemg8.j |
|
3 |
|
cdlemg8.m |
|
4 |
|
cdlemg8.a |
|
5 |
|
cdlemg8.h |
|
6 |
|
cdlemg8.t |
|
7 |
|
cdlemg10.r |
|
8 |
|
simp33 |
|
9 |
|
simpl1 |
|
10 |
|
simpl31 |
|
11 |
|
simpl2l |
|
12 |
1 2 3 4 5 6 7
|
trlval2 |
|
13 |
9 10 11 12
|
syl3anc |
|
14 |
|
eqid |
|
15 |
|
simpl1l |
|
16 |
15
|
hllatd |
|
17 |
|
simp2ll |
|
18 |
17
|
adantr |
|
19 |
14 4
|
atbase |
|
20 |
18 19
|
syl |
|
21 |
14 5 6
|
ltrncl |
|
22 |
9 10 20 21
|
syl3anc |
|
23 |
14 2
|
latjcl |
|
24 |
16 20 22 23
|
syl3anc |
|
25 |
|
simpl1r |
|
26 |
14 5
|
lhpbase |
|
27 |
25 26
|
syl |
|
28 |
14 3
|
latmcl |
|
29 |
16 24 27 28
|
syl3anc |
|
30 |
|
simpl2r |
|
31 |
14 4
|
atbase |
|
32 |
30 31
|
syl |
|
33 |
14 2
|
latjcl |
|
34 |
16 20 32 33
|
syl3anc |
|
35 |
14 1 3
|
latmle1 |
|
36 |
16 24 27 35
|
syl3anc |
|
37 |
14 1 2
|
latlej1 |
|
38 |
16 20 32 37
|
syl3anc |
|
39 |
14 5 6
|
ltrncl |
|
40 |
9 10 32 39
|
syl3anc |
|
41 |
14 1 2
|
latlej1 |
|
42 |
16 22 40 41
|
syl3anc |
|
43 |
|
simpr |
|
44 |
42 43
|
breqtrrd |
|
45 |
14 1 2
|
latjle12 |
|
46 |
16 20 22 34 45
|
syl13anc |
|
47 |
38 44 46
|
mpbi2and |
|
48 |
14 1 16 29 24 34 36 47
|
lattrd |
|
49 |
13 48
|
eqbrtrd |
|
50 |
49
|
ex |
|
51 |
50
|
necon3bd |
|
52 |
8 51
|
mpd |
|