Metamath Proof Explorer


Theorem ltrn11at

Description: Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses ltrneq2.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrneq2.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrneq2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrn11at ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( 𝐹𝑃 ) ≠ ( 𝐹𝑄 ) )

Proof

Step Hyp Ref Expression
1 ltrneq2.a 𝐴 = ( Atoms ‘ 𝐾 )
2 ltrneq2.h 𝐻 = ( LHyp ‘ 𝐾 )
3 ltrneq2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝑃𝑄 )
5 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝐹𝑇 )
7 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝑃𝐴 )
8 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
9 8 1 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
10 7 9 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
11 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝑄𝐴 )
12 8 1 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
13 11 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
14 8 2 3 ltrn11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹𝑃 ) = ( 𝐹𝑄 ) ↔ 𝑃 = 𝑄 ) )
15 5 6 10 13 14 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( ( 𝐹𝑃 ) = ( 𝐹𝑄 ) ↔ 𝑃 = 𝑄 ) )
16 15 necon3bid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( ( 𝐹𝑃 ) ≠ ( 𝐹𝑄 ) ↔ 𝑃𝑄 ) )
17 4 16 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( 𝐹𝑃 ) ≠ ( 𝐹𝑄 ) )