Metamath Proof Explorer


Theorem cdlemg9

Description: The triples <. P , ( F( GP ) ) , ( FP ) >. and <. Q , ( F( GQ ) ) , ( FQ ) >. are axially perspective by dalaw . Part of Lemma G of Crawley p. 116, last 2 lines. TODO: FIX COMMENT. (Contributed by NM, 1-May-2013)

Ref Expression
Hypotheses cdlemg8.l = ( le ‘ 𝐾 )
cdlemg8.j = ( join ‘ 𝐾 )
cdlemg8.m = ( meet ‘ 𝐾 )
cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l = ( le ‘ 𝐾 )
2 cdlemg8.j = ( join ‘ 𝐾 )
3 cdlemg8.m = ( meet ‘ 𝐾 )
4 cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 cdlemg9b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑄 ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
9 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
10 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐹𝑇 )
12 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝐺𝑇 )
13 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
14 10 11 12 9 13 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
15 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑃𝐴 ) → ( 𝐺𝑃 ) ∈ 𝐴 )
16 10 12 9 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑃 ) ∈ 𝐴 )
17 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
18 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑄𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
19 10 11 12 17 18 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
20 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇𝑄𝐴 ) → ( 𝐺𝑄 ) ∈ 𝐴 )
21 10 12 17 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐺𝑄 ) ∈ 𝐴 )
22 1 2 3 4 dalaw ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ( 𝐺𝑃 ) ∈ 𝐴 ) ∧ ( 𝑄𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ∧ ( 𝐺𝑄 ) ∈ 𝐴 ) ) → ( ( ( 𝑃 𝑄 ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) ) )
23 8 9 14 16 17 19 21 22 syl133anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( ( 𝑃 𝑄 ) ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝐺𝑃 ) ( 𝐺𝑄 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) ) )
24 7 23 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝐹𝑇 ) ∧ ( 𝐺𝑇𝑃𝑄 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐺𝑃 ) ) ( ( 𝐹 ‘ ( 𝐺𝑄 ) ) ( 𝐺𝑄 ) ) ) ( ( ( 𝐺𝑃 ) 𝑃 ) ( ( 𝐺𝑄 ) 𝑄 ) ) ) )