Step |
Hyp |
Ref |
Expression |
1 |
|
trlval3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
trlval3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
trlval3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
trlval3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
trlval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
trlval3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
trlval3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
10 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
11 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
12 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
13 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
14 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
16 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
18 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
19 |
16 17 15 18
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
20 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
21 |
13 15 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
22 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
23 |
1 2 4 5 6 7
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
24 |
16 17 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
26 |
24 25
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
27 |
21 26
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) ) |
28 |
|
simpl3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
29 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
30 |
22
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
31 |
17
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
32 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
33 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
34 |
1 33 4 5 6 7
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
35 |
29 30 31 32 34
|
syl112anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
36 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
37 |
13 36
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝐾 ∈ AtLat ) |
38 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
40 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
41 |
40 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
13 39 15 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
40 1 33
|
atl0le |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
44 |
37 42 43
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
46 |
35 45
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
47 |
46
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) = 𝑃 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
48 |
47
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) |
49 |
28 48
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) |
50 |
1 4 5 6 7
|
trlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
51 |
16 22 17 49 50
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ) |
52 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
53 |
52
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → 𝑄 ≠ 𝑃 ) |
54 |
1 2 4
|
hlatexch1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑅 ‘ 𝐹 ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑄 ≠ 𝑃 ) → ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
55 |
13 15 51 39 53 54
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑄 ≤ ( 𝑃 ∨ ( 𝑅 ‘ 𝐹 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
56 |
27 55
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
57 |
56
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
58 |
57
|
necon3bd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
59 |
12 58
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
60 |
1 2 3 4 5 6 7
|
trlval3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
61 |
8 9 10 11 59 60
|
syl113anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |