| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg8.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg8.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdlemg8.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdlemg8.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemg8.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemg8.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
cdlemg10.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 10 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 11 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> F e. T ) |
| 12 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> G e. T ) |
| 13 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
| 14 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) |
| 15 |
1 2 3 4 5 6
|
cdlemg9 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) .<_ ( ( ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ./\ ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) .\/ ( ( ( G ` P ) .\/ P ) ./\ ( ( G ` Q ) .\/ Q ) ) ) ) |
| 16 |
8 9 10 11 12 13 14 15
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) .<_ ( ( ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ./\ ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) .\/ ( ( ( G ` P ) .\/ P ) ./\ ( ( G ` Q ) .\/ Q ) ) ) ) |
| 17 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 18 |
8 12 9 17
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
| 19 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) |
| 20 |
8 12 10 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) |
| 21 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P e. A ) |
| 22 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
| 23 |
4 5 6
|
ltrn11at |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> ( G ` P ) =/= ( G ` Q ) ) |
| 24 |
8 12 21 22 13 23
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` P ) =/= ( G ` Q ) ) |
| 25 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( P .\/ Q ) ) |
| 26 |
1 2 3 4 5 6 7
|
cdlemg10c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) ) |
| 27 |
8 9 10 11 12 26
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) ) |
| 28 |
25 27
|
mtbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) |
| 29 |
1 2 3 4 5 6 7
|
trlval4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) /\ ( ( G ` P ) =/= ( G ` Q ) /\ -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) ) |
| 30 |
8 11 18 20 24 28 29
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) ) |
| 31 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
| 32 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
| 33 |
8 12 21 32
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` P ) e. A ) |
| 34 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( G ` P ) e. A ) -> ( F ` ( G ` P ) ) e. A ) |
| 35 |
8 11 33 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. A ) |
| 36 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ) |
| 37 |
31 33 35 36
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) = ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ) |
| 38 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ Q e. A ) -> ( G ` Q ) e. A ) |
| 39 |
8 12 22 38
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` Q ) e. A ) |
| 40 |
1 4 5 6
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( G ` Q ) e. A ) -> ( F ` ( G ` Q ) ) e. A ) |
| 41 |
8 11 39 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F ` ( G ` Q ) ) e. A ) |
| 42 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ ( G ` Q ) e. A /\ ( F ` ( G ` Q ) ) e. A ) -> ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) |
| 43 |
31 39 41 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) = ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) |
| 44 |
37 43
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) = ( ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ./\ ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) ) |
| 45 |
30 44
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ./\ ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) ) |
| 46 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` G ) .<_ ( P .\/ Q ) ) |
| 47 |
1 2 3 4 5 6 7
|
trlval4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) ) |
| 48 |
8 12 9 10 13 46 47
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) ) |
| 49 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) -> ( P .\/ ( G ` P ) ) = ( ( G ` P ) .\/ P ) ) |
| 50 |
31 21 33 49
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( P .\/ ( G ` P ) ) = ( ( G ` P ) .\/ P ) ) |
| 51 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ ( G ` Q ) e. A ) -> ( Q .\/ ( G ` Q ) ) = ( ( G ` Q ) .\/ Q ) ) |
| 52 |
31 22 39 51
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( Q .\/ ( G ` Q ) ) = ( ( G ` Q ) .\/ Q ) ) |
| 53 |
50 52
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) = ( ( ( G ` P ) .\/ P ) ./\ ( ( G ` Q ) .\/ Q ) ) ) |
| 54 |
48 53
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( ( G ` P ) .\/ P ) ./\ ( ( G ` Q ) .\/ Q ) ) ) |
| 55 |
45 54
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .\/ ( R ` G ) ) = ( ( ( ( F ` ( G ` P ) ) .\/ ( G ` P ) ) ./\ ( ( F ` ( G ` Q ) ) .\/ ( G ` Q ) ) ) .\/ ( ( ( G ` P ) .\/ P ) ./\ ( ( G ` Q ) .\/ Q ) ) ) ) |
| 56 |
16 55
|
breqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) =/= ( P .\/ Q ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( F ` ( G ` P ) ) ) ./\ ( Q .\/ ( F ` ( G ` Q ) ) ) ) .<_ ( ( R ` F ) .\/ ( R ` G ) ) ) |