| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 |  | simp31 |  | 
						
							| 11 |  | simp32 |  | 
						
							| 12 |  | simp21 |  | 
						
							| 13 |  | simp22l |  | 
						
							| 14 |  | simp33 |  | 
						
							| 15 | 1 2 3 4 5 6 7 | cdlemg11b |  | 
						
							| 16 | 8 12 13 10 11 14 15 | syl123anc |  | 
						
							| 17 |  | simp1l |  | 
						
							| 18 |  | simp1r |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 2 3 4 5 19 | cdlemg3a |  | 
						
							| 21 | 17 18 12 13 20 | syl211anc |  | 
						
							| 22 |  | simp22 |  | 
						
							| 23 | 5 6 1 2 4 3 19 | cdlemg2k |  | 
						
							| 24 | 8 12 22 10 23 | syl121anc |  | 
						
							| 25 | 16 21 24 | 3netr3d |  | 
						
							| 26 | 1 2 3 4 5 6 19 | cdlemg12a |  | 
						
							| 27 | 8 9 10 11 25 26 | syl113anc |  | 
						
							| 28 | 21 24 | oveq12d |  | 
						
							| 29 |  | simp23 |  | 
						
							| 30 | 5 6 1 2 4 3 19 | cdlemg2l |  | 
						
							| 31 | 8 12 22 29 10 30 | syl122anc |  | 
						
							| 32 | 27 28 31 | 3brtr4d |  |