Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp1 |
|
9 |
|
simp2 |
|
10 |
|
simp31 |
|
11 |
|
simp32 |
|
12 |
|
simp21 |
|
13 |
|
simp22l |
|
14 |
|
simp33 |
|
15 |
1 2 3 4 5 6 7
|
cdlemg11b |
|
16 |
8 12 13 10 11 14 15
|
syl123anc |
|
17 |
|
simp1l |
|
18 |
|
simp1r |
|
19 |
|
eqid |
|
20 |
1 2 3 4 5 19
|
cdlemg3a |
|
21 |
17 18 12 13 20
|
syl211anc |
|
22 |
|
simp22 |
|
23 |
5 6 1 2 4 3 19
|
cdlemg2k |
|
24 |
8 12 22 10 23
|
syl121anc |
|
25 |
16 21 24
|
3netr3d |
|
26 |
1 2 3 4 5 6 19
|
cdlemg12a |
|
27 |
8 9 10 11 25 26
|
syl113anc |
|
28 |
21 24
|
oveq12d |
|
29 |
|
simp23 |
|
30 |
5 6 1 2 4 3 19
|
cdlemg2l |
|
31 |
8 12 22 29 10 30
|
syl122anc |
|
32 |
27 28 31
|
3brtr4d |
|