Metamath Proof Explorer


Theorem cdlemg12b

Description: The triples <. P , ( FP ) , ( F( GP ) ) >. and <. Q , ( FQ ) , ( F( GQ ) ) >. are centrally perspective. TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg12b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q ˙ G P ˙ G Q ˙ F G P ˙ F G Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q K HL W H
9 simp2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P A ¬ P ˙ W Q A ¬ Q ˙ W F T
10 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q G T
11 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P Q
12 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P A ¬ P ˙ W
13 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q Q A
14 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q ¬ R G ˙ P ˙ Q
15 1 2 3 4 5 6 7 cdlemg11b K HL W H P A ¬ P ˙ W Q A G T P Q ¬ R G ˙ P ˙ Q P ˙ Q G P ˙ G Q
16 8 12 13 10 11 14 15 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q G P ˙ G Q
17 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q K HL
18 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q W H
19 eqid P ˙ Q ˙ W = P ˙ Q ˙ W
20 1 2 3 4 5 19 cdlemg3a K HL W H P A ¬ P ˙ W Q A P ˙ Q = P ˙ P ˙ Q ˙ W
21 17 18 12 13 20 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q = P ˙ P ˙ Q ˙ W
22 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q Q A ¬ Q ˙ W
23 5 6 1 2 4 3 19 cdlemg2k K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T G P ˙ G Q = G P ˙ P ˙ Q ˙ W
24 8 12 22 10 23 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q G P ˙ G Q = G P ˙ P ˙ Q ˙ W
25 16 21 24 3netr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ P ˙ Q ˙ W G P ˙ P ˙ Q ˙ W
26 1 2 3 4 5 6 19 cdlemg12a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q P ˙ P ˙ Q ˙ W G P ˙ P ˙ Q ˙ W P ˙ P ˙ Q ˙ W ˙ G P ˙ P ˙ Q ˙ W ˙ F G P ˙ P ˙ Q ˙ W
27 8 9 10 11 25 26 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ P ˙ Q ˙ W ˙ G P ˙ P ˙ Q ˙ W ˙ F G P ˙ P ˙ Q ˙ W
28 21 24 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q ˙ G P ˙ G Q = P ˙ P ˙ Q ˙ W ˙ G P ˙ P ˙ Q ˙ W
29 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q F T
30 5 6 1 2 4 3 19 cdlemg2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q = F G P ˙ P ˙ Q ˙ W
31 8 12 22 29 10 30 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q F G P ˙ F G Q = F G P ˙ P ˙ Q ˙ W
32 27 28 31 3brtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q ¬ R G ˙ P ˙ Q P ˙ Q ˙ G P ˙ G Q ˙ F G P ˙ F G Q