Metamath Proof Explorer


Theorem cdlemg17iqN

Description: cdlemg17i with P and Q swapped. (Contributed by NM, 13-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17iqN K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G F Q = F P

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL
9 simp12 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P W H
10 8 9 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL W H
11 simp21 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P A ¬ P ˙ W
12 simp22 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P Q A ¬ Q ˙ W
13 simp13l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P F T
14 simp13r K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G T
15 simp23 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P P Q
16 simp33 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G P P
17 simp31 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P R G ˙ P ˙ Q
18 simp32 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
19 1 2 3 4 5 6 7 cdlemg17pq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
20 10 11 12 13 14 15 16 17 18 19 syl333anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
21 1 2 3 4 5 6 7 cdlemg17i K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r G F Q = F P
22 20 21 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P G F Q = F P