Metamath Proof Explorer


Theorem cdlemg17iqN

Description: cdlemg17i with P and Q swapped. (Contributed by NM, 13-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17iqN KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGFQ=FP

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHL
9 simp12 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPWH
10 8 9 jca KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHLWH
11 simp21 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPPA¬P˙W
12 simp22 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPQA¬Q˙W
13 simp13l KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPFT
14 simp13r KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGT
15 simp23 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPPQ
16 simp33 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGPP
17 simp31 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPRG˙P˙Q
18 simp32 KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPP¬rA¬r˙WP˙r=Q˙r
19 1 2 3 4 5 6 7 cdlemg17pq KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙r
20 10 11 12 13 14 15 16 17 18 19 syl333anc KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPKHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙r
21 1 2 3 4 5 6 7 cdlemg17i KHLWHQA¬Q˙WPA¬P˙WFTGTQPGQQRG˙Q˙P¬rA¬r˙WQ˙r=P˙rGFQ=FP
22 20 21 syl KHLWHFTGTPA¬P˙WQA¬Q˙WPQRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPPGFQ=FP